Selasa, 22 September 2015

KROMATOGRAFI

     Kromatografi adalah suatu teknik pemisahan molekul berdasarkan perbedaan pola pergerakan antara fase gerak dan fase diam untuk memisahkan komponen (berupa molekul) yang berada pada larutan.Molekul yang terlarut dalam fase gerak, akan melewati kolom yang merupakan fase diam. Molekul yang memiliki ikatan yang kuat dengan kolom akan cenderung bergerak lebih lambat dibanding molekul yang berikatan lemah.Dengan ini, berbagai macam tipe molekul dapat dipisahkan berdasarkan pergerakan pada kolom.
Setelah komponen terelusi dari kolom, komponen tersebut dapat dianalisis dengan menggunakan detektor atau dapat dikumpulkan untuk analisis lebih lanjut.Beberapa alat-alat analitik dapat digabungkan dengan metode pemisahan untuk analisis secara on-line (on-line analysis) seperti: penggabungan kromatografi gas (gas chromatography) dan kromatografi cair (liquid chromatography) dengan mass spectrometry (GC-MS dan LC-MS), Fourier-transform infrared spectroscopy (GC-FTIR), dan diode-array UV-VIS (HPLC-UV-VIS).

Daftar isi

 Jenis Kromatografi

Kromatografi Cair (Liquid Chromatography)

        Kromatografi cair merupakan teknik yang tepat untuk memisahkan ion atau molekul yang terlarut dalam suatu larutan. Jika larutan sampel berinteraksi dengan fase stasioner, maka molekul-molekul didalamnya berinteraksi dengan fase stasioner; namun interaksinya berbeda dikarenakan adanya perbedaan daya serap (adsorption), pertukaran ion (ion exchange), partisi (partitioning), atau ukuran. Perbedaan ini membuat komponen terpisah satu dengan yang lain dan dapat dilihat perbedaannya dari lamanya waktu transit komponen tersebut melewati kolom. Terdapat beberapa jenis kromatografi cair, diantaranya: reverse phase chromatography, High Performance Liquid Chromatography (HPLC), size exclusion chromatography, serta supercritical fluid chromatography.

Reverse phase chromatography

       Reverse phase chromatography merupakan alat analitikal yang kuat dengan memadukan sifat hidrofobik serta rendahnya polaritas fase stasioner yang terikat secara kimia pada padatan inert seperti silika. Metode ini biasa digunakan untuk proses ekstraksi dan pemisahan senyawa yang tidak mudah menguap (non-volatile).

High performance liquid chromatography

       High performance liquid chromatography (HPLC) mempunyai prinsip yang mirip dengan reverse phase. Hanya saja dalam metode ini, digunakan tekanan dan kecepatan yang tinggi. Kolom yang digunakan dalam HPLC lebih pendek dan berdiameter kecil, namun dapat menghasilkan beberapa tingkatan equilibrium dalam jumlah besar.

Size exclusion chromatography

      Size exclusion chromatography, atau yang dikenal juga dengan gel permeation atau filtration chromatography biasa digunakan untuk memisahkan dan memurnikan protein. Metode ini tidak melibatkan berbagai macam penyerapan dan sangat cepat. Perangkat kromatografi berupa gel berpori yang dapat memisahkan molekul besar dan molekul kecil. Molekul besar akan terelusi terlebih dahulu karena molekul tersebut tidak dapat penetrasi pada pori-pori.

       Kromatografi Pertukaran Ion (Ion-Exchange Chromatography) Kromatografi pertukaran ion (ion-exchange chromatography) biasa digunakan untuk pemurnian materi biologis, seperti asam amino, peptida, protein. Metode ini dapat dilakukan dalam dua tipe, yaitu dalam kolom maupun ruang datar (planar). Terdapat dua tipe pertukaran ion, yaitu pertukaran kation (cation exchange) dan pertukaran anion (anion exchange). Pada pertukaran kation, fase stasioner bermuatan negatif; sedangkan pada pertukaran anion, fase stasioner bermuatan positif. Molekul bermuatan yang berada pada fase cair akan melewati kolom. Jika muatan pada molekul sama dengan kolom, maka molekul tersebut akan terelusi. Namun jika muatan pada molekul tidak sama dengan kolom, maka molekul tersebut akan membentuk ikatan ionik dengan kolom. Untuk mengelusi molekul yang menempel pada kolom diperlukan penambahan larutan dengan pH dan kekuatan ionik tertentu. Pemisahan dengan metode ini sangat selektif dan karena biaya untuk menjalankan metode ini murah serta kapasitasnya tinggi, maka metode ini biasa digunakan pada awal proses keseluruhan.

https://upload.wikimedia.org/wikipedia/commons/thumb/4/41/TLC_black_ink.jpg/220px-TLC_black_ink.jpg

DESTILASI



Distilasi atau penyulingan adalah suatu metode pemisahan bahan kimia berdasarkan perbedaan kecepatan atau kemudahan menguap (volatilitas) bahan.
Dalam penyulingan, campuran zat dididihkan sehingga menguap, dan uap ini kemudian didinginkan kembali ke dalam bentuk cairan. Zat yang memiliki titik didih lebih rendah akan menguap lebih dulu.
Metode ini termasuk sebagai unit operasi kimia jenis perpindahan massa. Penerapan proses ini didasarkan pada teori bahwa pada suatu larutan, masing-masing komponen akan menguap pada titik didihnya. Model ideal distilasi didasarkan pada Hukum Raoult dan Hukum Dalton.

Daftar isi

Bagan

https://upload.wikimedia.org/wikipedia/commons/1/13/Simple_distillation_apparatus.png


Bagan perlengkapan distilasi di laboratorium
Berikut adalah susunan rangkaian alat ditilasi sederhana:
  • 1. wadah air
  • 2. labu distilasi
  • 3. sambungan
  • 4. termometer
  • 5. kondensor
  • 6. aliran masuk air dingin
  • 7. aliran keluar air dingin
  • 8. labu distilat
  • 9. lubang udara
  • 10. tempat keluarnya distilat
  • 13. penangas
  • 14. air penangas
  • 15. larutan zat
  • 16. wadah labu distilat

Sejarah

Distilasi pertama kali ditemukan oleh kimiawan Yunani sekitar abad pertama masehi yang akhirnya perkembangannya dipicu terutama oleh tingginya permintaan akan spritus. Hypathia dari Alexandria dipercaya telah menemukan rangkaian alat untuk distilasi dan Zosimus dari Alexandria-lah yang telah berhasil menggambarkan secara akurat tentang proses distilasi pada sekitar abad ke-4.
Bentuk modern distilasi pertama kali ditemukan oleh ahli-ahli kimia Islam pada masa kekhalifahan Abbasiah, terutama oleh Al-Razi pada pemisahan alkohol menjadi senyawa yang relatif murni melalui alat alembik, bahkan desain ini menjadi semacam inspirasi yang memungkinkan rancangan distilasi skala mikro, The Hickman Stillhead dapat terwujud. Tulisan oleh Jabir Ibnu Hayyan (721-815) yang lebih dikenal dengan Ibnu Jabir menyebutkan tentang uap anggur yang dapat terbakar. Ia juga telah menemukan banyak peralatan dan proses kimia yang bahkan masih banyak dipakai sampai saat kini. Kemudian teknik penyulingan diuraikan dengan jelas oleh Al-Kindi (801-873).
Salah satu penerapan terpenting dari metode distilasi adalah pemisahan minyak mentah menjadi bagian-bagian untuk penggunaan khusus seperti untuk transportasi, pembangkit listrik, pemanas, dll. Udara didistilasi menjadi komponen-komponen seperti oksigen untuk penggunaan medis dan helium untuk pengisi balon. Distilasi juga telah digunakan sejak lama untuk pemekatan alkohol dengan penerapan panas terhadap larutan hasil fermentasi untuk menghasilkan minuman suling.

Jenis

Ada 4 jenis distilasi yang akan dibahas disini, yaitu distilasi sederhana, distilasi fraksionasi, distilasi uap, dan distilasi vakum. Selain itu ada pula distilasi ekstraktif dan distilasi azeotropic homogenous, distilasi dengan menggunakan garam berion, distilasi pressure-swing, serta distilasi reaktif.

Distilasi Sederhana

Pada distilasi sederhana, dasar pemisahannya adalah perbedaan titik didih yang jauh atau dengan salah satu komponen bersifat volatil. Jika campuran dipanaskan maka komponen yang titik didihnya lebih rendah akan menguap lebih dulu. Selain perbedaan titik didih, juga perbedaan kevolatilan, yaitu kecenderungan sebuah substansi untuk menjadi gas. Distilasi ini dilakukan pada tekanan atmosfer. Aplikasi distilasi sederhana digunakan untuk memisahkan campuran air dan alkohol.

Distilasi Fraksionisasi

Fungsi distilasi fraksionasi adalah memisahkan komponen-komponen cair, dua atau lebih, dari suatu larutan berdasarkan perbedaan titik didihnya. Distilasi ini juga dapat digunakan untuk campuran dengan perbedaan titik didih kurang dari 20 °C dan bekerja pada tekanan atmosfer atau dengan tekanan rendah. Aplikasi dari distilasi jenis ini digunakan pada industri minyak mentah, untuk memisahkan komponen-komponen dalam minyak mentah
Perbedaan distilasi fraksionasi dan distilasi sederhana adalah adanya kolom fraksionasi. Di kolom ini terjadi pemanasan secara bertahap dengan suhu yang berbeda-beda pada setiap platnya. Pemanasan yang berbeda-beda ini bertujuan untuk pemurnian distilat yang lebih dari plat-plat di bawahnya. Semakin ke atas, semakin tidak volatil cairannya.

Distilasi Uap

Distilasi uap digunakan pada campuran senyawa-senyawa yang memiliki titik didih mencapai 200 °C atau lebih. Distilasi uap dapat menguapkan senyawa-senyawa ini dengan suhu mendekati 100 °C dalam tekanan atmosfer dengan menggunakan uap atau air mendidih. Sifat yang fundamental dari distilasi uap adalah dapat mendistilasi campuran senyawa di bawah titik didih dari masing-masing senyawa campurannya. Selain itu distilasi uap dapat digunakan untuk campuran yang tidak larut dalam air di semua temperatur, tapi dapat didistilasi dengan air. Aplikasi dari distilasi uap adalah untuk mengekstrak beberapa produk alam seperti minyak eucalyptus dari eucalyptus, minyak sitrus dari lemon atau jeruk, dan untuk ekstraksi minyak parfum dari tumbuhan.
Campuran dipanaskan melalui uap air yang dialirkan ke dalam campuran dan mungkin ditambah juga dengan pemanasan. Uap dari campuran akan naik ke atas menuju ke kondensor dan akhirnya masuk ke labu distilat.

Distilasi Vakum

Distilasi vakum biasanya digunakan jika senyawa yang ingin didistilasi tidak stabil, dengan pengertian dapat terdekomposisi sebelum atau mendekati titik didihnya atau campuran yang memiliki titik didih di atas 150 °C. Metode distilasi ini tidak dapat digunakan pada pelarut dengan titik didih yang rendah jika kondensornya menggunakan air dingin, karena komponen yang menguap tidak dapat dikondensasi oleh air. Untuk mengurangi tekanan digunakan pompa vakum atau aspirator. Aspirator berfungsi sebagai penurun tekanan pada sistem distilasi ini.

Azeotrop

Azeotrop adalah campuran dari dua atau lebih komponen yang memiliki titik didih yang konstan. Azeotrop dapat menjadi gangguan yang menyebabkan hasil distilasi menjadi tidak maksimal. Komposisi dari azeotrope tetap konstan dalam pemberian atau penambahan tekanan. Akan tetapi ketika tekanan total berubah, kedua titik didih dan komposisi dari azeotrop berubah. Sebagai akibatnya, azeotrop bukanlah komponen tetap, yang komposisinya harus selalu konstan dalam interval suhu dan tekanan, tetapi lebih ke campuran yang dihasilkan dari saling memengaruhi dalam kekuatan intramolekuler dalam larutan.
Azeotrop dapat didistilasi dengan menggunakan tambahan pelarut tertentu, misalnya penambahan benzena atau toluena untuk memisahkan air. Air dan pelarut akan ditangkap oleh penangkap Dean-Stark. Air akan tetap tinggal di dasar penangkap dan pelarut akan kembali ke campuran dan memisahkan air lagi.Campuran azeotrop merupakan penyimpangan dari hukum Raoult.

Efektifitas Distilasi

Secara teori, hasil distilasi dapat mencapai 100% dengan cara menurunkan tekanan hingga 1/10 tekanan atmosfer. Dapat pula dengan menggunakan distilasi azeotrop yang menggunakan penambahan pelarut organik dan dua distilasi tambahan, dan dengan menggunakan penggunaan cornmeal yang dapat menyerap air baik dalam bentuk cair atau uap pada kolom terakhir. Namun, secara praktek tidak ada distilasi yang mencapai 100%.

Distilasi Skala Industri

Umumnya proses distilasi dalam skala industri dilakukan dalam menara, oleh karena itu unit proses dari distilasi ini sering disebut sebagai menara distilasi (MD). Menara distilasi biasanya berukuran 2-5 meter dalam diameter dan tinggi berkisar antara 6-15 meter. Masukan dari menara distilasi biasanya berupa cair jenuh, yaitu cairan yang dengan berkurang tekanan sedikit saja sudah akan terbentuk uap dan memiliki dua arus keluaran, arus yang diatas adalah arus yang lebih volatil (mudah menguap) dan arus bawah yang terdiri dari komponen berat. Menara distilasi terbagi dalam 2 jenis kategori besar.
  1. Menara Distilasi tipe Stagewise, menara ini terdiri dari banyak piringan yang memungkinkan kesetimbangan terbagi-bagi dalam setiap piringannya, dan
Menara Distilasi tipe Continous, yang terdiri dari pengemasan dan kesetimbangan cair-gasnya terjadi di sepanjangkolom menara.

EKSTRAKSI


Ekstraksi adalah suatu proses pemisahan suatu zat berdasarkan perbedaan kelarutannya terhadap dua cairan tidak saling larut yang berbeda, biasanya air dan yang lainnya pelarut organik.
Proses ekstraksi dapat berlangsung pada:
  • Ekstraksi parfum, untuk mendapatkan komponen dari bahan yang wangi.
  • Ekstraksi cair-cair atau dikenal juga dengan nama ekstraksi solven. Ekstraksi jenis ini merupakan proses yang umum digunakan dalam skala laboratorium maupun skala industri.
  • Leaching, adalah proses pemisahan kimia yang bertujuan untuk memisahkan suatu senyawa kimia dari matriks padatan ke dalam cairan.

Daftar isi

Penyiapan bahan yang akan diekstrak dan pelarut

Selektivitas

Pelarut hanya boleh melarutkan ekstrak yang diinginkan, bukan komponen-komponen lain dari bahan ekstraksi. Dalam praktik,terutama pada ekstraksi bahan-bahan alami, sering juga bahan lain (misalnya lemak, resin) ikut dibebaskan bersama-sama dengan ekstrak yang diinginkan. Dalam hal itu larutan ekstrak tercemar yang diperoleh harus dibersihkan, yaitu misalnya diekstraksi lagi dengan menggunakan pelarut kedua.

Kelarutan

Pelarut sedapat mungkin memiliki kemampuan melarutkan ekstrak yang besar (kebutuhan pelarut lebih sedikit).

Kemampuan tidak saling bercampur

Pada ekstraksi cair-cair, pelarut tidak boleh (atau hanya secara terbatas) larut dalam bahan ekstraksi.

Kerapatan

Terutama pada ekstraksi cair-cair, sedapat mungkin terdapat perbedaan kerapatan yang besar antara pelarut dan bahan ekstraksi. Hal ini dimaksudkan agar kedua fase dapat dengan mudah dipisahkan kembali setelah pencampuran (pemisahan dengan gaya berat). Bila beda kerapatannya kecil, seringkali pemisahan harus dilakukan dengan menggunakan gaya sentrifugal (misalnya dalam ekstraktor sentrifugal).

Reaktivitas

Pada umumnya pelarut tidak boleh menyebabkan perubahan secara kimia pada komponen-komponen bahan ekstraksi. Sebaliknya, dalam hal-hal tertentu diperlukan adanya reaksi kimia (misalnya pembentukan garam) untuk mendapatkan selektivitas yang tinggi. Seringkali ekstraksi juga disertai dengan reaksi kimia. Dalam hal ini bahan yang akan dipisahkan mutlak harus berada dalam bentuk larutan.

Titik didih

Karena ekstrak dan pelarut biasanya harus dipisahkan dengan cara penguapan, destilasi atau rektifikasi, maka titik didih kedua bahan itu tidak boleh terlalu dekat, dan keduanya tidak membentuk ascotrop. Ditinjau dari segi ekonomi, akan menguntungkan jika pada proses ekstraksi titik didih pelarut tidak terlalu tinggi (seperti juga halnya dengan panas penguapan yang rendah).

Ekstraksi Pelarut

Ekstraksi pelarut menghasilkan sebuah larutan melalui sebuah proses pemisahan suatu zat berdasarkan perbedaan kelarutannya.

Hukum Distribusi atau partisi

Dengan Hukum Distribusi dapat diketahui bahwa zat tertentu lebih mudah larut dalam pelarut-pelarut tertentu. Contohnya bila banyaknya iod diubah-ubah, angka banding konsentrasi-konsentrasi itu selalu konstan dengana syarat temperaturnya konstan.
konsentrasi Iod dalam Karbon disulfida / konsentrasi iod dalam air = C2/C1 = Kd
Kd= dikenal dengan koefisien distribusi atau partisi. Hukum distribusi atau partisi dapat dirumuskan: bila suatu zat terlarut terdistribusi antara dua pelarut yang tidak dapat campur, maka suatu temperatur yang konstan untuk tiap spesi molekul terdapat angka banding berubah dengan sifat dasar kedua pelarut itu. angaka banding distribusi ini tidak tergantung pada spesi molekul lain apapun yang mungkin ada. Harga angka banding berubah dengan sifat dasar kedua pelarut, sifat dasar zat terlarut, dan temperatur
Penerapan ekstraksi pelarut dalam analisis kualitatif
  1. Mengeluarkan brom dari iod dari dalam larutan air, bila larutan iod dalam air dikocok dengan karbon disulfida yang terjadi kira-kira 400 kali konsentrasi dalam air.
  2. Berbagai uji dalam analisis kualitatif (i) kromium pentoksida lebih dapat larut dalam amil alkohol(eter) dari pada dalam air, dengan mengocok larutan encer dalam air dengan amil alkohol(eter). Diperoleh suatau larutan pekat dengan amil alkohol dan adanya kromat atau hidrogen peoksida yang dinyatakan oleh warna biru.
  3. Studi hidrolisis, terdapat kesetimbangan antara garam, hidrolisis dapar ditulis sebagai garam + air ←→ asam + basa. konsentrasi dapat ditentukan dengan cara distribusi antara air dan pelarut lain, seperti benzena atau klorofrom.
  4. Penentuan susunan ion Halida yang kompleks, iod jauh lebih dapat larut dalam Kallium iodida dalam air. hal ini disebabkan oleh terbentuknya ion tri iodida
Pengukuran distribusi juga telah dilakukan untuk membuktikan adanya ion tetraaminokuprat (II), dalam suatu larutan air beramoniak dari tembaga sulfida, dengan diperiksannya perisi amonia bebas antara klorofrom dan air.

http://image.slidesharecdn.com/powerpointnewkel1-120519055628-phpapp01/95/powerpoint-new-kel-1-8-728.jpg?cb=1337407234

MSDS HCL

MATERIAL SAFETY DATA SHEET
HYDROCHLORIC ACID
1. IDENTITAS PRODUK DAN PERUSAHAAN
NAMA PRODUK : Asam Hydrochloric
RUMUS KIMIA : HCl
CODE PRODUKSI : -
SYNONIM : Asam chloride, asam muriat, Hydroge chloride
2. KOMPOSISI BAHAN
Bahan 36% berat CAS No.7647-01-0
Batas pemaparan : 5ppm ( 7,5 mg/m3 ) ( TLV-C )
3. IDENTIFIKASI BAHAYA
Ringkasan bahaya yang penting : Asam chloride sangat korosif dan toksik serta iritatif bila kontak dengan kulit, mata atau terhirup.
Akibatnya terhadap kesehatan :
MATA : Menyebabkan iritasi bahkan dapat menyebabkan kebutaan
KULIT : Menyebabkan luka bakar dan dermatitis
TERTELAN : Menyebabkan luka bakar membrane mukosa di mulut, Esophagus dan mulut
TERHIRUP : Menyebabkan bronchitis kronis
Karsinogenik : Tidak ada efek
Teratogenik : Tidak ada efek
Reproduksi : Tidak ada efek
4. TINDAKAN PERTOLONGAN PERTAMA PADA KECELAKAAN
Terkena pada :
MATA : Bilas dengan air mengalir sekurang-kurangnya 15 menit
KULIT : Cuci dengan air sebanyak-banyaknya. Segera lepaskan pakaian yang terkontaminasi.
TERTELAN : Bila sadar, beri minum 1 – 2 gelas untuk pengenceran. Hindari pemanis buatan.
TERHIRUP : Segera pindahkan korban ke tempat yang cukup udara, berikan pernafasan buatan atau oksigen korban segera bawa ke dokter.
5. TINDAKAN PENANGGULANGAN KEBAKARAN
a. Sifat- sifat bahan mudah terbakar : Tidak mudah terbakar
Titik nyala : -
b. Suhu nyala sendiri : -
c. Daerah mudah terbakar
Batas terendah mudah terbakar : -
Batas tertinggi mudah terbakar : -
d. Media pemadam api : Dapat dilakukan dengan pemadam api biasa. Wadah yang terpapar panas dapat di semprot dengan air agar dingin, tetapi air tidak boleh masuk ke dalam wadah.
e. Bahaya khusus : Bila kontak dengan logam akan menghasilkan gas hydrogen yang mudah terbakar
f. Instruksi pemadam api : Dapat dilakukan dengan pemadam api biasa. Wadah yang terpapar panas dapat disemprot dengan air agar dingin tetapi air tidak boleh masuk ke dalam wadah. Pakailah pakaian pelindung diri dan alat pelindung pernafasan.
6. TINDAKAN TERHADAP TUMPAHAN DAN KEBOCORAN
a. Tumpahan dan kebocoran kecil : Bila kebocoran tidak besar, tutup dengan tanah kering, pasir kering atau material lain yang tidak terbakar diikuti dengan lembaran plastik untuk menghindari penyebaran atau kontak dengan air hujan.
b. Tumpahan dan kebocoran besar : Penanganan kebocoran gas atau tumpahan larutan Hcl harus memakai alat pelindung diri terutama pelindung pernafasan, kulit (badan)
c. Alat pelindung diri : Respirator kimia penyerap HCL atau respirator udara (SCBA), Kacamata (goggles) atau perisai muka (Full face), gloves (neoprene, nitrile).
7. PENYIMPANAN DAN PENANGANAN BAHAN
a. Penanganan bahan : Bekerja dengan gas atau uap HCl harus dalam lemari asam. Waspada terhadap kebocoran gas.
b. Pencegahan terhadap pemaparan :Gunakan SCBA dan pakaian pelindung
c. Tindakan pencegahan terhadap kebakaran dan peledakan
d. Penyimpanan : Simpan di tempat dingin, berventilasi dan lantai gedung harus tahan asam.
e. Syarat khusus penyimpanan bahan : Jauhkan dari bahan oksidator dan bahan alkali, serta sianida, sulfida, formadehid, logam natrium, merkuri sulfat dan amonium hidroksida. Periksa kebocoran wadah asam.
8. PENGENDALIAN PEMAJANAN DAN ALAT PELINDUNG DIRI
a. Pengendalian teknis : Gunakan Ventilasi umum yang mencakup untuk menjaga debu ke tingkat serendah mungkin.
b. Alat pelindung Diri : Respirator kimia penyerap HCl atau respirator udara, kacamata (goggles), Jas lab, perisai muka (full face), sarung tangan karet (neoprene gloves)
9. SIFAT – SIFAT FISIKA DAN KIMIA
Bentuk : Cair
Bau : menyengat
Warna : Bening sampai agak kekuningan
Massa jenis : 2.13
Titik didih : 85 oC
Titik lebur : -20oC
Tekanan uap (20oC) : 20 mbar
Kelarutan dalam Air (20 oC) : terlarut
82,3 g/ 100 m
pH (20 oC) : 1
10. REAKTIFITAS DAN STABILITAS
a. Sifat Reaktifitas : Senyawa HCl stabil pada suhu kamar. Oleh pengaruh panas akan terurai menjadi hydrogen dan klor. Larutan dalam air sangat reaktif dengan logam-logam dan menghasilkan gas hydrogen yang eksplosif. Bereaksi dengan oksidator menghasilkan gas khlor yang toknik.
b. Sifat stabilitas : Stabil pada tekanan dengan temperatur yang normal.
c. Kondisi yang harus dihindari : panas dan lembab
d. Bahan yang harus dihindari :Aluminium, amines, carbide, hydrida, fluor, logam alkali, logam, basa kuat garam dari asam oksihalogon, H2SO4 pekat, senyawa hydrogen semimetalik, semimetalic oxides, aldehyde, sulfida, lithium, silicide, vinymethyl ether
e. Bahan dekomposisi : Hydrochloric acid chlorine
f. Bahaya Polimarisasi : -
11. INFORMASI TOKSIKOLOGI
a. Nilai ambang batas ( NAB ) : 5 ppm ( 7,5 mg/m3 (TLV-C)
b. Terkena mata : dapat menimbulkan iritasi mata dan kebutaan
c.Tertelan LD 50 (tikus) : 000 mg/ Kg
d. Terhirup LC 50 (pernafasan) : 3124 ppm (V)/ 1 jam
e. Terkena kulit : Dapat menimbulkan luka bakar
f. Efek local : -
g. Pemaparan jangka pendek/ akut : Terhirup dapat menyebabkan iritasi pada hidung dan tenggorokan, saluran pernapasan atau kerusakan paru-paru
h. Pemaparan jangka panjang/ kronik : Bronchitis kronis bila sering menghirup gas dan dermatitis jika kontak dengan kulit
Karsinogen : tidak ada
Teratogen : tidak ada
Reproduksi : tidak ada
Mutagen : tidak ada
12. INFORMASI EKOLOGI
a. Dampak terhadap lingkungan : Efek Biologi lethal pada ikan dari 25 mg/l. Beracun pada organisme aquatik. Berbahaya dikarenakan perubahan pH
b. Degradasi lingkungan : -
c. Bio Akumulasi : -
13. PEMBUANGAN LIMBAH
Sebelum dibuang ke lingkungan, harus dinetralkan dengan alkali sampai Ph = 9
14. PENGANGKUTAN
a. Peraturan Internasional : Peraturan DOT
b. Pengangkutan darat : truk tanki
c. Pengangkutan laut : Kapal laut
d. Pengakutan udara : tidak ada
15. PERATURAN PERUNDANG-UNDANGAN
Keputusan Menteri Tenaga Kerja No. KEP 187/MEN/1999